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Chapter 1

Basic Combinatorics

The principle of addition:-
If a finite set S is a union of disjoint non-empty subsets S1, S2, ..., Sn, then
|S| = |S1| + |S2| + ... + |Sn|. In other words if S1, S2, ..., Sn is a partition of S
then |S| = |S1|+ |S2|+ ... + |Sn| holds.
If E1, E2, ..., En are mutually exclusive events with Ei can happen in ei ways,
then E1 or E2 or ... or En can happen in e1 + e2 + ... + en ways.

The principle of multiplication:- If S1, S2, ..., Sn are non empty finite sets ,
then the no of elements in Cartesian product S1 × S2 × ...× Sn is the product
|S1| × |S2| × ...|Sn|.

Number of k permutations of an n-set:-
A k permutation of an n-set is an ordered selection (without replacement of any
elements) of k elements from an n-set. On the first hand we have n choices,
once we have chosen the first element we have n − 1 choice, similarly after
we choose our k − 1 th element we are left with n − (k − 1) = n − k + 1
choices. Let S = {a1, a2, ..., an} be the set with n elements. Now let S1 be the
set corresponding to the possible elements for first choice. Then S = S1 and
|S1| = n. Without loss of generality let an be the first element chosen. After
this let S2 be the set corresponding to the possible elements for the 2nd choice.
S2 = {a1, a2, ..., an−1}, |S2| = n−1. Again without loss of generality let an−1 be
the second element chosen. S3 be the set corresponding to the possible element
for the 3rd choice. Proceeding in similar fashion for kth choice the set corre-
sponding will be Sk = {a1, ..., an−k+1} and |Sk| = n−k+1. Let P be a k permu-
tation of n-set i.e. P = (p1, p2, ..., pk) where pi ∈ Si. The set of all such P will be
the Cartesian product of S1, S2, ..., Sk i.e. S1×S2× ...×Sk of and by principle of
multiplication |S1×S2× ...×Sk| = |S1|×|S2|× ...×|Sk| = n(n−1)...(n−k+1).
Hence the no of k permutations of an n-set is given by n×(n−1)...(n−k+1).We
denoted it by nPk.

Let us see what happens to nPk when k varies over natural numbers. Clearly
as long as Sk is non empty nPk is non zero. By similar argument in the proof
we will have Sk non-empty if n− k + 1 ≥ 1 i.e. n ≥ k. In particular for n = k,
nPn = n × (n − 1)...3 × 2 × 1. We denote this by n! i.e. nPn = n!. For n < k,
nPk = 0 vacuously as it is not possible to choose more than n elements from an
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n-set without replacement of any element.

Number of k combinations of an n-set:-
A k combination of an n set is an unordered selection. We denote it by nCk. We
wish to have an explicit formula for nCk like we have for nPk. For this we make
a two way of counting. Number of k permutations of n-set is nPk. In other way
we can first select k-subset in nCk ways (as a k combination of an n-set is just
selecting k elements from n-set with out considering any order in which these
k elements were chosen) and order those elements in kPkways (clearly after we
select a k combination of an n set we are left with a k-set in unordered manner.
Now we have to order this k-subset which is same as taking k permutation of a
k-set). Now let C(n, k) be the set of all k combinations of an n-set, P(n, k) and
P(k, k) be the set of all k permutations of a n-set and a k-set respectively. It is
clear that |P(n, k)| = |C(n, k)| × |P(k, k)| (As each k permutation of an n-set
is uniquely determined by a unique couple of k combination of the same n-set
and k permutation of the chosen k-set). Hence nPk = nCk × kPk i.e.
nCk =

nPk
kPk

= n(n−1)...(n−k+1)
k!

We will use some further notation for convenience. We write [n]k to denote
nPk = n(n−1)...(n−k+1) and a call it a falling factorial. By convention 0! = 1

We then have nCk = [n]k
k! = [n]k(n−k)!

k!(n−k)! = n!
k!(n−k)!

Rule of bijection
Let A be B be two finite set. If there exists a bijective function f : A → B,
then |A| = |B|.
Let T be a n-set. We wish to show that no of subsets of T is 2n. With out
loss of generality we can assume T = {1, 2, ..., n}. Let BT be set of all bi-
nary sequence of length n. i.e. for bS ∈ BS , bS = bS1bS2 ...bSn such that
bSi

= 0 or 1 for 1 ≤ i ≤ n. Clearly BS = BS1
× BS2

× ... × BSn
with

BS1
= BS2

= ... = BSn
= {0, 1}. Hence by principle of multiplication |BS | = 2n.

Let P (T ) be the power set of T i.e. the set that contains all the subsets of T .
Consider f : P (T )→ BS such that for S ∈ P (T ), bS = bS1bS2 ...bSn = f(S)
bSi = 0 if i /∈ S,
1 if i ∈ S where 1 ≤ i ≤ n. (in particular for T = {1, 2, 3, 4, 5, 6} and
S = {1, 2, 5} bS = f(S) = bS1

bS2
bS3

bS4
bS5

= 110010)
Clearly f is a bijection as every pre-image of bS ∈ BS is a unique subset of T .
Hence |P (T )| = 2n.

Result 1:-
Let m and n be positive integers. Then there exists a bijection between any two
of the following sets.
(i) The set of all the functions from an n-set to an m-set.
(ii) The set of words of length n on an alphabet of m letters.
(iii) The set of n-tuples with entries from an m-set.
(iv)The set consisting of all the ways of distributing n distinct objects into
m distinct boxes.
In each case the cardinality of the set given is mn.

Proof:- Let T = {1, 2, ..., n} be the n-set and S = {s1, s2, ...sm} be the m-
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set. Let f : T → S be any given function. If we allow this f map to the n-tuple
(f(1), f(2), ..., f(n)) of length n. Clearly f(i) (1 ≤ i ≤ n) can take any value
from S itself which is a m-set. Similarly for a given m-set B and a given n-tuple
(a1, a2, ...an) such that ai ∈ B, we map this n-tuple to a function f : T → B
such that f(i) = ai. This sets a bijection between set in (i) and (ii). It is
not difficult to give a bijection between (ii) and (iii). For (i) and (iv), given a
function f : T → S such that f(i) = j, put ith object in Bjth box. Similarly
we can also state the reverse direction. This completes the bijection between
the given sets. Which from rule of bijection follows that each set have the same
cardinality. Cardinality set of n-tuples with entries from m-set is mn follows
from principle of multiplication.

Result 2:-
Let m and n be positive integers. Then Then there exists a bijection between
any two of the following sets.
(i) The set of all the injective functions from an n-set to an m-set .
(ii) The set of words of length n on an alphabet of m letters with the condition
that the word consists of distinct letters.
(iii) The set of n-tuples with distinct entries from an m-set.
(iv)The set consisting of all the ways of distributing n distinct objects into
m distinct boxes with the condition that no box holds more than one object.

In each case the cardinality of the set given is mPn = [m]n.

Proof :- Let T = {1, 2, ..., n} be the n-set and S = {s1, s2, ...sm} be the m-
set. Let f : T → S be any given injective function. Clearly f(i) (1 ≤ i ≤ n) and
f(i) 6= f(j) ∀i 6= j. If we allow this f map to the n-tuple (f(1), f(2), ..., f(n))
of length n can take any value from S itself which is a m-set. Also the entries
in the n-tuple will be distinct as f(i) 6= f(j) ∀i 6= j. Similarly for a given m-set
B and a given n-tuple (a1, a2, ...an) such that ai ∈ B and )ai 6= aj ∀i 6= j ,
we map this n-tuple to a function f : T → B such that f(i) = ai. ai 6= aj
∀i 6= j ensures that f will be injective. This sets a bijection between set in
(i) and (ii). It is not difficult to give a bijection between (ii) and (iii). For
(i) and (iv), given a function f : T → S such that f(i) = j and f(i) 6= f(j)
∀i 6= j, put ith object in Bjth box. The constraint f(i) 6= f(j) ∀i 6= j takes
care about not any box will get more than one object. Similarly we can also
state the reverse direction. This completes the bijection between the given sets.
Which from rule of bijection follows that each set have the same cardinality.
Cardinality set of n-tuples with distinct entries from m-set is mPn which follows
from k − permutatationsofan− set given previously.

Result 3:-
Let M be a multi-set containing r distinct objects each with infinite multiplic-
ities (to ensure that r may repeat in the set as many times). Then the total
number of d-permutations of M is rd.

Proof :- The total no of doing the same is counting the no of words of length d
on an alphabet that consists of r distinct letters. Now as each letter is allowed
to repeat any number of times we never fall short of any letter. Hence by Result
1(ii) the required number is rd.

3



Remark 1:-
While defining binomial coefficient nCk we actually count number of ways of
putting n distinct objects into two distinct boxes labelled B1 and B2 such that
the first box contains k objects and the second box contains n−k objects. Gen-
eralizing this would be a multinomial coefficient i.e. the no of ways of putting
n distinct objects in r distinct boxes B1, B2, ..., Br such that the i-th box Bi

holds ni objects is called a multinomial coefficient and is denoted by nPn1,n2,...,nr

necessarily then n1 + n2 + ... + nr = n.

Result 4:-
Let S be a n-set and suppose the n elements/objects in S are to be put in
r distinct boxes B1, B2, ..., Br such that the i-th box Bi contains ni objects
with n1 + n2 + ...nr = n. The number of ways of doing this is equal to
nPn1,n2,...,nr = n!

n1!n2!...nr!

Proof :- With out loss of generality we can say firstly we select n1 objects of
n-set and put them in B1 box, which can be done in nCn1

ways. After this we
are left with n− n1 objects out of which we will select n2 boxes put it into B2,
which can be done in n−n1Cn2

ways. Proceeding in similar manner finitely upto
r − 2 more times and from principle of multiplication it follows that number of
ways of doing it will be
nCn1

×n−n1Cn2
×n−n1−n2Cn3

×...×n−(n1+...+nr−1)Cnr
= n!

n1!(n−n1)!
× (n−n1)!

n2!(n−n1−n2)!
×

n−n1−n2Cn3
× ... × n−(n1+...+nr−1)Cnr

= n!
n1!n2!(n−n1−n2)!

× n−n1−n2Cn3
× ... ×

n−(n1+...+nr−1)Cnr
= n!

n1!n2!...nr!
(by continuing on similar fashion)

Corollary :-
Let M be a multi-set consisting of r distinct objects x1, x2, ..., xr such that the
i-th object xi has multiplicity ni. Let n = n1 + n2 + ... + nr. Then the total
number of n-permutations of M is nPn1,n2,...,nr

= n!
n1!n2!...nr!

Proof :- We set up a bijection between the required set of all ways of elements
putting the elements of S in r boxes and all the npermutations of the multi-
set M . First of all we number the elements of S from 1 to n. If element i is
put in the box Bj , then make a n-permutation in which ith place is occupied
by xj . Conversely, given an n-permutation of M . if ith place is occupied by
xj then put the element i in the Bj box. The result follows from rule of bijection.

Result 5:-
Let M be a multi-set with r distinct objects x1, x2, ..., xr each with infinite mul-
tiplicity. The number of k-combinations of M is k+r−1Ck = k+r−1Cr−1.

Proof :-Every k-combination is uniquely determined by a sequence b1, b2, ..., br
where bi ∀i are non-negative integer and b1 + b2 + ...br = k. For each given
k-combination of M make a binary sequence of length k + r − 1 as follows. At
the starting write b1 zeros and follow this by a 1, then write b2 zeros and then
write 1 again and so on. There will be a 1 separating br−1 zeros and br zeros.
Thus the binary sequence will consist of exactly b1 + b2 + ... + br = k zeros and
r− 1 ones. Conversely for a given binary sequence of length k+ r− 1 consisting
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of exactly k zeros and r − 1 ones, we read the no of zeros from left to the first
one and call it b1, then we call b2 as the no of zeros between the first one and
the last one and so on. Finally the no of zeros to the right of the last one is br.
Since the no of binary sequence of length k + r− 1 with exactly k zeros is equal
to k+r−1Ck = k+r−1Cr−1(from problem 1(i)) result follows from rule of bijection.

Alternative proof :- Consider a (k + r − 1)-set S with elements of S numbered
from 1 to k + r− 1. Every k-combination is uniquely determined by a sequence
b1, b2, ..., br where bi ∀i are non-negative integer and b1+b2+...br = k. For given
such k-combination of M we remove the element next to b1, then we remove the
element next to b1 + b2 and so on. We remove elements upto the next element
of b1 + b2 + ... + br−1 (including the next element of b1 + b2 + ... + br−1. After
this removal of r − 1 elements we are left with a k-subset of S. Conversely for
a given such k-subset of S, we number the elements of S and following to this
numbering we see which numbered elements appear in the k-subset. We assign
b1 to the no of numbered elements in S which are in between the first numbered
and the second numbered element of the k-subset, then assign b2 to the no of
numbered elements in S which are in between the second and third numbered
element of the k-subset and so on. Finally we assign br to the no of numbered
elements in S after kth numbered element in k-subset. Number of ways of choos-
ing k-subsets of a k+r−1 subset is k+r−1Ck, result follows from rule of bijection.

Corollary :-
The number of ways of putting k identical objects into r distinct boxes with
each box containing at least one object is k−1Cr−1

Proof :- The scenario is quite similar to the scenario in Result 5 except the
constraint that each box contains atleast one. What we do is we put exactly
one object into each box. After this we are left with k − r objects as r boxes
will contain exactly r objects with each containing exactly one. This problem
now reduces to Result 5, however here we have k−r objects here with r distinct
boxes which can be put in (k−r)+r−1Cr−1 = k−1Cr−1 ways.
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Chapter 2

Stirling numbers

Definition 1:-
Let n, k be positive integers with n ≤ k. The Stirling number of second kind
S(n, k) is the total number of partitions of an n-set into k disjoint, non-empty
and unordered subsets.

We take the n-set to be {1, 2, ..., n}, denote this set by [n]. Let us take one
example and see. For n = 5 and k = 1 there is only one way to have parti-
tion of [5] into 1 disjoint, non-empty and ordered set. Which is [n] = [n] itself.
S(5, 1) = 1
For n = 5 and k = 2. Let us explicitly write down the possible partitions.
[n] == [1]∪{2, 3, 4, 5} = {2}∪{1, 3, 4, 5} = {3}∪{1, 2, 4, 5} = {4}∪{1, 2, 3, 5} =
{5}∪[4] = [2]∪{3, 4, 5} = {1, 3}∪{2, 4, 5} = {1, 4}∪{2, 3, 5} = {1, 5}∪{2, 3, 4} =
{2, 3} ∪ {1, 4, 5} = {2, 4} ∪ {1, 3, 5} = {2, 5} ∪ {1, 3, 4} = {3, 4} ∪ {1, 2, 5} =
{3, 5} ∪ {1, 2, 4} = {4, 5} ∪ [3]
Note that we will not count {3, 4, 5} ∪ [2] as distinct as it already corresponds
to [2] ∪ {3, 4, 5} for we need to count unordered subsets. There are 15 such
possibilities. So S(5, 2) = 15.We can do this in this way. In order to get, sup-
pose P1 and P2 be two partition (will not use unordered, disjoint, non-empty
from now for convenience) of [5] . There are two case of getting partitions. One
is when partitions are such that |P1| = 1 which immediately imply |P2| = 2,
another one is |P1| = 2 which imply |P2| = 3. Number of ways of getting parti-
tion such that |P1| = 1 is 5C1 and getting partitions such that |P1| = 2 is 5C2.
So the total number of ways of getting two partition is S(5, 2) = 5C1+5C2 = 15.

Let us see what happens when n = 6 and k = 2. There are three cases of
getting two partitions. And the cases are when |P1| = 1, |P1| = 2 and |P1| = 3.
For |P1| = 1 and |P1| = 2 no of ways are 6C1 and 6C2 respectively. In case of

|P1| = 3 number of ways are
6C3

2 (reason for dividing 2 as follows. For |P1| = 3
6C3 chooses any subset with cardinality 3 so that [3] and {4, 5, 6} to be counted
different, however we can not do that as [3] ∪ {4, 5, 6} and {4, 5, 6} ∪ [3] are to

be counted once). S(6, 2) = 6C1 + 6C2 +
6C3

2 = 6 + 15 + 10 = 31

For n = 6 and k = 3. Let P1, P2 and P3 be three partitions of [6]. There
are three cases of getting such. Three cases are as follows when |P1| = |P2| = 1,
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|P1| = 1, |P2| = 2, |P1| = |P2| = 2. For |P1| = |P2| = 1. For |P1| = |P2| = 1

no of ways are
6C1,1,4

2 (In order to have |P1| = |P2| = 1, |P3| = 4 we have to
look at multinomial coefficient 6C1,1,4. However ordered selection of P1, P2 and
P3 is included in this multinomial coefficient. For instance {1}, {2}, {3, 4, 5, 6}
and {2}, {1}, {3, 4, 5, 6} are counted as different whereas they should be counted
as once. Hence for each such pair(where order of P1 and P2 were taken) is to
be counted once which justifies division by 2). For second case when |P1| =
1, |P2| = 2 and |P3| = 3 no of ways of getting partition is 6C1,2,3 (Note that
there will not be any kind of division by a number (greater than 1) required as
before. As for each choice for P1, P2 and P3 it corresponds to a unique partition
which in turn is due to the fact |P1| 6= |P2| 6= |P3|). For |P1| = |P2| = |P3| = 2

no of ways will be
6C2,2,2

6 (In particular ([2], {3, 4}, {5, 6}), ([2], {5, 6}, {3, 4}),
({3, 4}, [2], {5, 6}), ({3, 4}, {5, 6}, [2]), ({5, 6}, [2], {3, 4}) and ({5, 6}, {3, 4}, [2])
are counted as different whereas for partition it has to be counted once.This jus-

tify division by 6). Hence S(6, 3) =
6C1,1,4

2 +6C1,2,3+
6C2,2,2

6 = 15+60+15 = 90.

Remark 1:-
Finding Stirling number S(n, k) an algorithm can be written as follows.
(i) Find no of cases such that |P1|+ |P2|+ ...+ |Pk| = n with distinct case have
usual meaning viz. two cases are different iff at least one of |Pi| where 1 ≤ i ≤ k
is different.
(ii) For each case find no of ways of partition.
(iii) Add all the no of ways of getting partition corresponding to each case.

Lemma 1:-
No of ways of having partition for |P1|, |P2|, ..., |Pk| is

nP|P1|,|P2|,...,|Pk|
t , where t

is as follows. Let |Pi11
| = |Pi12

| = ... = |Pi1r1
| with 1 ≤ i11 < i12 < ... < i1r1 ≤ k,

|Pi21
| = |Pi22

| = ... = |Pi2r2
| with 1 ≤ i11 < i12 < ... < i2r2 ≤ k,..., |Pis1

| = |Pis2
| =

... = |Pisrs
| with 1 ≤ it1 < it2 < ... < isrs ≤ k and r1 + r2 + ...rs = k then

t = r1!r2!...rs!.

Note that upper index of i is used to classify the cardinality of k partitions
into s components such that each component correspond to a unique number
and each jth component has rj number of partitions corresponding to that
unique number.

Proof :-No of ways of having ordered partitions for |P1|, |P2|, ..., |Pk| is equal
to putting n objects in k boxes with ith box receiving |Pi| number of objects.
Hence the required number will be nP|P1|,|P2|,...,|Pk|. However we have included
ordered partition, which needs to be taken care of. Now Consider a fixed jth
upper index of i. For this jth upper index |Pij1

| = |Pij2
| = ... = |Pijrj

| with

1 ≤ ij1 < ij2 < ... < ijrj ≤ k i.e. there are rj number of partitions out of k
which have the same cardinality. It is quite clear that Pij1

6= Pij2
6= ... 6= Pijrj

which implies that ordering of these rj partitions has already been considered
in our counted ordered partitions nP|P1|,|P2|,...,|Pk|. But these ordering of rj par-
titions which can be done in rj ! ways (As all sets are distinct) which correspond
to only one way when we take the unordered partition, meaning we have to
divide rj ! to the no of ways of ordered partitions in order to get unordered
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partition which is required. As this upper index j can take any value starting
from 1 upto s we have to divide rj ! for each j. Hence the desired number is
nP|P1|,|P2|,...,|Pk|

t = n!
n1!n2!...nk!r1!r2!...rs!

Let us see with an example. Consider the third case while calculating S(6, 3).
For third case |P1| = |P2| = |P3| = 2 i.e. if we see this case from lemma 1
point of view |Pi11

| = |Pi12
| = |Pi1r1

| where s = 1 and r1 = 3. t = r1! = 3! = 6.

Consider the second case of the same when |P1| = |Pi11
| = 1, |P2| = |Pi21

| = 2
and |P3| = |Pi31

| = 3. So s = 3, r1 = r2 = r3 = 1, t = 1! × 1! × 1! = 1. For the
first case |P1| = |P2| = 1, |P3| = 4, s = 2, r1 = 2, r2 = 1, t = 2!× 1! = 2.

Theorem 1:-
S(n, k) =

∑ nP|P1|,|P2|,...,|Pk|
t =

∑
n!

n1!n2!...nk!r1!r2!...rs!
where sum is taken over

all unordered k-tuples (|P1|, |P2|, ..., |Pk|) such that |P1|+ |P2|+ ... + |Pk| = n.

Proof :- Proof follows from Remark 1 and Lemma 1.

Theorem 2:-
Let n and k be positive integers with n ≥ k. Then
S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

Proof :- Let X be a n-set and X = ∪ki=1Xi be a given partition of X. For
x ∈ X, define Y = X −{x} For given partition {X1, X2, ..., Xk} gives a natural
partition of Y = ∪ki=1Yi. With out loss of generality we assume that x ∈ Xk.
Now we have two cases one is when Xk = {x} and another is when Xk 6= {x}.
When Xk = {x}, Yk is empty, which imply Y = ∪k−1i=1 Yi, i.e. we get a k−1 parti-
tion of Y . This process is also reversible. For a given partition {Y1, Y2, ..., Yk−1},
we take Xi = Yi for i = 1, 2, ..., k − 1 and Xk = {x}. Clearly this case can arise
in S(n− 1, k − 1) ways.
For the second case Xk 6= {x} for a given partition {X1, X2, ..., Xk} correspond-
ing partition will be {Y1, Y2, ..., Yk} with each Yi non empty. This can be done
in S(n − 1, k) ways. However given any such partition {Y1, Y2, ..., Yk} we can
choose to insert into any one of the Yi and depending upon the which Yi we
choose, we get a different partition of X. That is the correspondence between
the set of partitions of Y into k non-empty unordered disjoint subsets and the
set of partitions of X into k non-empty unordered disjoint subset with the sub-
set containing x having at least two elements is 1 : k. For the second case no of
partitions will be kS(n− 1, k). Hence S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

This recurrence relation is quite helpful. For instance in the example given in
the beginning to evaluate S(6, 2), S(6, 2) = S(5, 1) + 2S(5, 2) = 1 + 2× 15 = 31.
Similarly S(7, 3) = S(6, 2) + 3S(6, 3) = 31 + 3× 90 = 301.

Theorem 3:-
The number of surjective (onto) functions from an n-set to k-set( n ≥ k) is
equal to k!S(n, k).

Proof :- Let A = {a1, a2, ..., an} be the n-set and B = {b1, b2, ..., bk} be the k-set.
A function f : A→ B will be surjective if ∀ j ∈ {1, 2, ...k} ∃ i ∈ {1, 2, ..., n} such
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that f(ai) = bj . We wish to calculate all such possible f . Let {A1, A2, ..., Ak}
be a given k partition of A. For this given partition we assign a function
g : P (A)→ B such that g(Ai) = bj for all 1 ≤ i, j ≤ k. For a given partition Ai

is fixed. However assigning these Ai to bj by the function g has no constraint
on j except 1 ≤ j ≤ k. To be precise g(A1) has k many choices viz. b1, b2, ..., bk.
Once we assign one of these to g(A1), we have k − 1 many choices. Similarly
we proceed finitely. So the no of such g : P (A) → B will be k!. Number of
k partitions of A is S(n, k). Hence number of such g will be k!S(n, k) (quite
evident from rule of multiplication). Now for a given g : P (A) → B we can
find f : A → B just by sending all the elements for each partition Ai to the
corresponding given bj (as g is given). In reverse direction for a given f : A→ B
we for each bj we consider f−1(bj) (where f−1(bj) = {ai ∈ A : f(ai) = bj}).
Clearly ∪kj=1f

−1(bj) = A and g : P (A)→ B will be corresponding to the given

f : A→ B with g(f−1(bj)) = bj . This gives a bijection and completes the proof.

Note :- It is quite clear that for n ≤ k there will not be any onto function
from an n-set to a k-set.

Corollary :-
The number of ways of putting n balls of distinct colours into k distinct
boxes with each boxes containing at least one ball is equal to k!S(n, k).

Proof :- All we need is to give a bijection. For given an n-set A, k-set B
and a f : A→ B put the ith coloured ball into jth box if f(ai) = bj . Similarly
we can give for reverse direction.
Note :- In an informal sense n distinct coloured balls ensures we have a n-set, k
distinct boxes ensures a k-set while each boxes containing atleast one ball takes
care of surjective part.

Theorem 4:-
For any positive integer m and n we have

mn =
∑min(m,n)

k=1
mCkk!S(n, k) =

∑min(m,n)
k=1

mPkS(n, k) =
∑min(m,n)

k=1 [m]kS(n, k)

Proof :- Let A and B be n-set and m-set respectively. Left most side counts no
of functions from A to B. For n ≥ m every function from A to B has a unique
range C which is some k-subset of B where 1 ≤ k ≤ m = min(m,n). C being
k-subset of B can be chosen in mCk ways and number of functions such that C
is the range is k!S(n, k), result follows from summing over k. For n < m every
function from A to B has a unique range C which is again some k-subset of B
where 1 ≤ k ≤ n = min(m,n) (as for n < k < m there will not be any function
due to the fact that for any function cardinality of range(finite) can not exceed
the cardinality of domain(finite)). Proof is same from this point. Right most
side follows from definition itself.

Corollary :-
Let n be a positive integer. Then the following formal polynomial identity holds
xn =

∑n
k=1 S(n, k)[x]k

Proof :-Since n is fixed both the sides are of the degree ≤ n implying polynomial
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(xn−
∑n

k=1 S(n, k)[x]k) has a degree n. The polynomial xn−
∑n

k=1 S(n, k)[x]k

has its roots at x = 1, 2, .., n as for such choices x ≤ n and xn =
∑min(x,n)

k=1 S(n, k)[x]k
holds by theorem 3. Also x = 0 trivial root of the polynomial. Hence we have
a n degree polynomial having n + 1 roots meaning the polynomial has to be
identically 0 which completes the proof.
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